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Abstract

In Probabilistic Logic Nilsson uses the device of a probability dis-
tribution over the set of possible worlds to assign probabilities to the
sentences of a logical language. In his paper Nilsson concentrated on
inference and associated computational issues. This paper, on the
other hand, examines the probabilistic semantics in more detail, par-
ticularly for the case of first order languages, and attempts to explain
some of the features and limitations of this form of probability logic.
It is pointed out that the device of assigning probabilities to logical
sentences has certain expressive limitations. In particular, statisti-
cal assertions are not easily expressed by such a device. This leads
to certain difficulties with attempts to give probabilistic semantics to
default reasoning using probabilities assigned to logical sentences.
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1 Introduction

In [11 Nilsson descfibes a method of assigning probabilities to the sentences
of a logic through a probability distribution over th3 set of possible worlds.
Each possible world is a unique and consistent set of truth value assignments
for all of the sentences in the logic. Although this approach is unproblematic
when applied to propositional languages, certain difficulties arise when deal-
ing with first order languages. By taking a different tack these difficulties can

be overcome, and indeed, it has already been demonstrated that probabili-
ties can be coherently assigned to the sentences of any first order language
(Gaifman [2], Scott and Krauss [3]).

While the method of assigning probabilities to logical formulas is capable

of representing probabilistic degrees of belief, it is incapable of effectively
representing statistical assertions. It is argued that nany types of defaults
have a natural statistical interpretation, but cannot be represented by prob-
abilities over logical formulas, because of this limitation. Some authors have
attempted to represent defaults in exactly this way (Geffner and Pearl [4],
Pearl [5]), and the difficulties with their systems can be demonstrated.

It is pointed out that although probabilities over logical formulas fails to
do the job, statistical assertions can be efficiently represented in other types
of probability logics, logics which go beyond the simple extension of first
order logic offered by Nilsson's probabilistic logic.

2 The Propositional Case

A natural semantic model for a propositional language is simply a subset
of the set of atomic symbols (Chang and Keisler [6]). This subset is the
set of atomic symbols which are assigned the truth value true (t). Hence,
in the propositional case Nilsson's concept of possible worlds, i.e., a set of
consistent truth value assignments, has a natural correspondence with the
set of semantic models. Each possible world is completely determined by
its truth value assignments to the atomic symbols of the language, and the .
assignments to the atomic symbols can be viewed as being the characteristic ijte
function of a semantic model (with t = 1, f = 0).

For example, in a propositional language with two atomic symbols {A, B} d-.- , .. i

there are four possible worlds with corresponding semantic models (o is used ': 
-" .
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to indicate the truth evaluation function).

1. {AO = t,B = t or {A,B}.

2. {Ad = t,Ba = f} or {A}.

3. {Aa = f,Ba = t} or {B}.

4. {AO = f,B" = f} or {}, i.e., the empty set.

An equivalent way of looking at things, which will turn out to be more
useful when we move to first order languages, is to consider the atomsi of the
language. When the language has a finite number of atomic symbols each
possible world can be represented as a single sentence: a sentence formed by
conjoining each atomic symbol or its negation, such a sentence is called an
atom. Corresponding to the four cases above we have the four atoms A A B,
A A -'B, -'A A B, and -,A A -B.

Given a probability distribution over the set of possible worlds it is pos-
sible to assign a probability to each sentence of the language. Each sentence
is given a probability equal to the probability of the set of worlds in which
it is true.

Equivalently, a probability distribution can be placed over the sentences of
the logic, more precisely over the Lindenbaum-Tarski algebra of the language.
This algebra is generated by grouping the sentences into equivalence classes.
Two sentences, a and 0, are in the same equivalence class iff I-0 a -*

where I-o indicates deducible from the propositional axioms.
This technique is not limited to languages with a finite number of atomic

symbols. When the language is finite, however, the atoms will be sentences
of the language, and the probability distribution will be comTActely specified
by the probabilities of the atoms (the e-classes of). Any sentence can be
written as a disjunction of a unique set of atoms, and its probability will
be the sum of the probabilities of these atoms. For example, if we specify
the probabilities {A A B = .5, A A -B = .1,-'AA B = .2,-'A A -B = .2},
then the sentence A V B will have probability 0.8 as it can be written as
(A A B) V (A A -,B) V (-,A A B).

'An atom in a Boolean algebra is a minimal non-zero element (Bell and Machover, [71).
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3 First Order Languages

When the move is made to first order languages certain problems arise. The
first problem is that we lose the nice correspondence between possible worlds
and semantic models. The normal semantic model for a first order language is
considerably more complex than the model for a propositional language, and
the truth value of the sentences in a first order language is determined both
by the model and by an interpretation (i.e., the mapping from the symbols
to the semantic entities). For a given truth value assignment to the sentences
(possible world) there will be many different (in fact an infinite number) of
model/interpretation pairs which will yield the same truth values. Hence,
the semantic structure of the possible worlds is unclear.

Another difficulty, which Nilsson is aware of, is that Nilsson's techniques
depend on being able to generate consistent truth value assignments for a set
of sentences. These are used as 0/1 column vectors in his V matrix. This
technique is limited to languages in which the consistency of a finite set of
sentences can be established. The consistency of a set of first order sentences
is not decidable, except in special cases (see Ackermann [81 for an interesting
survey).

These difficulties can be avoided if instead of probability distributions over
possible worlds we consider probability distributions over the Lindenbaum-
Tarski (L-T) algebra of the language. It has already been demonstrated by
Gaifman (2] that a probability measure can be defined over the L-T algebra of
sentences of a first order language. Every sentence in the language will have a
probability equal to the probability of its equivalence class, and furthermore,
the probabilities will satisfy the condition

If I- -(a A 3) then p[a V 0] = p[a] + p[],

where -- indicates deducible from the first order axioms. This means that the
probability measure preserves the partial order of the algebra. In this partial
order we have a </3 iff a A /3 = a; hence, p[/p] = p[/3 A a] + p[# A -a] (by
the above condition), and p[/] = p[a] + p[o A -,a] > p[a]. Under this partial
order the conjunction and disjunction operators generate the greatest lower
bound (infimum) and least upper bound (supremum).

4



To examine what happens to quantified sentences under such a probability
measure it is sufficient to note that for L-T algebras we have that
(*)

13xaI = V l(x/t),
tET

where I o I indicates the e-class of the formula, and T is the set of terms of
the language. What this means is that each existentially quantified sentence
is equal to the supremum of all its instantiations. This implies that the
probability of any existentially quantified sentence must be greater than or
equal to the probability of any of its instances. Similarly, the probability of
any universally quantified sentence must be less than or equal to any of its
instances.

This interpretation also makes sense in terms of Nilsson's possible worlds.
In any possible world the existential must be true if any of its instantiations
are. Hence, the set of possible worlds in which the existential is true includes
the set of possible worlds in which any instantiation is true, and the existen-
tial must have a probability greater than or equal to the probability of any
of its instances.

4 The Representation of Statistical Knowl-
edge

Probabilities attached to logical sentences can be interpreted as degrees of
belief in those sentences. Instead of either asserting a sentence or its negation,
as in ordinary logic, one can attach some intermediate degree to it, a degree of
belief. So, for example, one could represent a degree of belief of greater than
0.9 in the assertion "Tweety can fly" by assigning the sentence Fly(Tweety) a
probability > 0.9. However, it is not easy to represent statistical information,
for example, the assertion "More than 90% of all birds fly." 2

2 It is the case that first order logic is in some sense universally expressive. That is,
set theory can be constructed in first order logic, and thus, sufficient mathematics can be
built up inside the language to represent statements of this form. This is not, however, an
efficient representation, nor is there any direct reflection in the semantics of the statistical
information. Since probabilities attached to logical formulas generalizes ordinary logic,
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First, propositional languages do not seem to possess sufficient power to
represent these kinds of statements. This particular statistical statement
is an assertion which indicates some relationship between the properties of
being a bird and being able to fly, but it is not an assertion about any
particular bird. This indicates that some sort of variable is required, i.e.,
this statement cannot be encode as a statement about any particular bird.
Propositional languages do not have variables, and so are inadequate for this
task even when they are generalized to take on probabilities instead of just
1/0 truth values.

When we move to first order languages we do get access to variables,
variables which can range over the set of individuals. A seemingly reasonable
way to represent this statement is to consider the probabilistic generalization
of the universal sentence VxBird(x) -- Fly(x). The universal in 1/0 first
order logic says that all birds fly, so if we attach a probability of > 0.9 perhaps
we will get what we need. Unfortunately, this does not work. If there is single
bird who is thought to be unable to fly, this universal will be forced to have
a probability close to zero. That is, the probability of this universal must be
1 - p[3xBird(x) A -Fly(x)]. Hence, if one believes to degree greater that 0.1
that a non-flying bird exists, then the probability of the universal must be
<.9.

Since universal quantification or its dual existential quantification are the
only ones available in a first order language, it does not seem that moving
to first order languages allows us to represent statistical assertions. There
is, however, one more avenue available: conditional probabilities. We have
probabilities attached to sentences hence with two sentences we can form
conditional probabilities. It has been suggested (Cheeseman [9]) that meta-
quantified statements of the following form can be used to capture statistical
statements, in particular for the statement about birds:

V(x)p[Fly(x)fBird(x)J > 0.9.

In this assertion quantification is occurring at a level outside of the language
(at a meta-level): "p[Fly(x)JBird(x)]" is not a formula of the first order
language. This statement is intended to assert that for every term, t, in the
object language the conditional probability of the sentence Fly(x/t), with
the variable x substituted by the term t, given Bird(x/t) is > 0.9.

statistical information could be represented in this manner; however, I am concerned here
with efficient representations.
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However, this formulation also falls prey to any know exception. Say
that there is some individual, denoted by the constant c, who is thought to
be a bird, i.e., p[Bird(c)] is high, and for some reason or the other is also
believed to be unable to fly, i.e., p[Fly(c)] is low, then clearly this statement
cannot be true for the instance when x is c; hence, the meta-level universal
statement cannot be true. It is important to note that it does not matter
what other things are known about the individual c. For example, it does
not matter if c is known to be an ostrich; it is still the case that the condi-
tional probability of Fly(c) given Bird(c) will not be > 0.9. Hence, there is
no way that the statistical statement "More than 90% of all birds fly" can
be represented by the assertion that the conditional probability is greater
than 0.9 for all substitutions of x: this assertion will be false for certain sub-
stitutions. The problem here is that the statistical statement implies that
p[Fly(x)JBird(x)] > 0.9 for a random x, but a universally quantified x is not
the same as a random variable x; furthermore, the simple device of assigning
probabilities to sentences of a logical language does not give you access to
random variables. This point has also been raised by Schubert [10].

5 The Representation of Defaults

There are many different defaults which have a natural statistical justifi-
cation, the famous example of "Birds fly" being one of them. A natural
reason for assuming by default that a particular bird can fly is simply the
fact that, in a statistical sense, most birds do fly. This is not to say that all
defaults have a statistical interpretation: there are many different notions of
typicality which do not have a straightforward statistical interpretation, e.g..
"Dogs give live birth" (Carlson [11], Nutter (121, also see Brachman [13] for
a discussion of different notions of typicality).

Since probabilities attached to the sentences of a logic do not offer any
easy way of representing statistical assertions, it is not surprising that at-
tempts to use this formalism to give meaning to defaults leads to certain
difficulties.

Recently Geffner and Pearl [41 have proposed giving semantics to de-
faults through meta-quantified conditional probability statements (also Pearl
[5]3). For example, the default "Birds fly" is given meaning through

3 Pearl uses a slightly different notion of probabilities within c of one. The technical



the meta-quantified statement Vx p[Fly(x)]Bird(x)] 1 In order to al-
low penguins to be non-flying birds they have the separate default rule:
Vx p[-Fly(x)JPenguin(x)] .z 1. They also have universal statements like
Vx Penguin(x) -+ Bird(x). The probability of these universals is one; thus,
as discussed above, every instantiation must also have probability one.

To examine the difficulties which arise from this approach consider the
following example. Say that we have a logical language with the predicates
Bird, Fly, and Penguin, some set of terms ti}, and a probability distribu-
tion over the sentences of the language which satisfies the default rules, i.e.,
forall terms ti, p[Fly(ti)IBird(t,)] - 1 and p[-'Fly(t,)JPenguin(t,)] ; 1, and
in which the universal Vx Penguin(r) -- Bird(x), has probability one. Some
simple facts which follow from the universal having probability one are that
forall terms ti, p[Bird(ti)] > p[Penguin(t)], and p[Bird(ti) A Penguin(ti)] =
p[Penguin(ti)]). Consider the following derivation:

1 p[Fly(ti)JBird(t)]

p(Fly(ti) A Bird(ti) A -Peng(ti)] p[Fly(ti) A Bird(ti) A Peng(ti)]

p[Bird(ti)] p[Bird(ti)]
< p[Fly(t) A Bird(t,) A -'Peng(ti)] + p(Fly(ti) A Bird(t) A Peng(t)]

p[Penguin(ti)] p[Penguin(ti)]

p[-,Penguin(t,)] p[Fly(ti) A Penguin(t)]
p[Penguin(ti)] p[Penguin(ti)]

= Odds[-Penguin(ti)] + " 0

That is, the constraints imply that for any term ti the odds that ti is not a
penguin must be at least :1; hence p[Penguin(ti)] cannot be much greater
than 0.5. Since ; 0.5 is an upper bound on the probability of all of these
sentences, it must also be the case that it is an upper bound on the probability
of the sentence 3x Penguin(x), by equation *.

That is, if we accept the defaults we are must reject any sort of high level
of belief in the existence of penguins.

This problem is similar to the problem discussed in the previous section;
a universally quantified variable is not the same as a random variable, and
cannot be used to encode a random variable.

differences between this approach and that of Geffner and Pearl do not make any difference
to the following discussion; the anomalies presented also appear in Pearl's system.
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6 Conclusions

It has been demonstrated that although probabilities can be assigned to the
sentences of any first order language, the resulting probability logics are not
powerful enough to efficiently represent statistical assertions. It has also been
demonstrated that attempts to give defaults a probabilistic semantics using
these probability logics leads to certain anomalies.

Statistical facts, it has been argued, give a natural justification to many
default inferences. This implies that probabilities might still be useful for
giving semantics to default rules and a justification to default inferences. For
example, the default rule "Birds fly" could be represented as a statistical
assertion that some large percentage of birds fly, and the default inference
"Tweety flies" could be given the justification 'hat Tweety probably does fly
if to the best of our knowledge Tweety was a randomly selected bird.

Probability logics which accomplish this have already been developed
(Bacchus [14], Kyburg [15]), but these logics go beyond the simple device of
assigning probabilities to the sentences of a logical language. Bacchus uses
a logic which has a probability distribution over the domain of discourse,
this logic is capable of expressing statistical information, and possesses a
sound and complete proof theory capable of reasoning with statistical facts.
Default inferences are handled by an inductive mechanism which forms de-
feasible conclusions, conclusions which can be defeated by new information.
Kyburg uses an object language/meta-language formalism, and has explored
the inductive formation of defeasible conclusions in greater detail [16].
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